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Since each of these item types has just two response categories, 
they are known as dichotomous items. A partial-credit model was 
used with polytomous free-response items (i.e., those with more 
than two score points).

13.2.1 Three- and Two-Parameter IRT Models for 
Dichotomous Items 

The fundamental equation of the three-parameter logistic (3PL) 
model gives the probability that a person whose proficiency is 
characterized by the unobservable variable θ on a scale k will 
respond correctly to item i:

(1)

where

xi is the response to item i, 1 if correct and 0 if incorrect;

θk is the proficiency of a person on a scale k;

ai is the slope parameter of item i, characterizing its discriminat-
ing power;

bi is its location parameter, characterizing its difficulty;

ci is its lower asymptote parameter, reflecting the chances of 
respondents of very low proficiency selecting the correct answer.

The probability of an incorrect response to the item is defined as

(2) .

The two-parameter logistic (2PL) model was used for the short 
free-response items that were scored as correct or incorrect. The 
form of the 2PL model is the same as Equations (1) and (2) with 
the ci parameter fixed at zero.

In scaling the Benchmarking data, the three- and two-parameter 
models were used in preference to the one-parameter Rasch 
model, primarily because they can more accurately account for 
the differences among items in their ability to discriminate 
between students of high and low ability. With the Rasch model, 
all items are assumed to have the same discriminating power, 
while the 2PL and 3PL models provide an extra item parameter 
to account for differences among items, and the 3PL model has a 
parameter that can be used to model guessing behavior among 
low-ability students.

Pi1 xi 1 θk ai bi ci, , ,=( ) ci

1 ci–( )

1.0 1.7ai– θk bi–( )( )exp+
------------------------------------------------------------------+=

Pi0 P xi 0 θk ai bi ci, , ,=( )≡ 1 Pi1 θk( )–=
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Modeling item response functions as accurately as possible by 
using 2PL and 3PL models also reduces errors due to model mis-
specification. The error is apparent when the model cannot 
exactly reproduce or predict the data using the estimated param-
eters. The difference between the observed data and those gener-
ated by the model is directly proportional to the degree of model 
mis-specification. Current psychometric convention does not 
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13.3 Item Parameter 
Estimation 
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13.3.1 Evaluating Fit of IRT Models to the Data

The fit of the IRT models to the TIMSS 1999 data was examined 
within each scale by comparing the empirical item response func-
tions with the theoretical item response function curves (see 
Exhibits 13.1 and 13.2). The theoretical curves are plots of the 
response functions generated by the model using values of the 
item parameters estimated from the data. The empirical results 
are calculated from the posterior distributions of the θs for each 
respondent who received the item. For dichotomous items the 
plotted values are the sums of these individual posteriors at each 
point on the proficiency scale for those students that responded 
correctly plus a fraction of the omitted responses, divided by the 
sum of the posteriors of all that were administered the item. For 
polytomous items, the sums for those who scored in the category 
of interest is divided by the sum for all those that were adminis-
tered the item.

Exhibit 13.1 TIMSS 1999 Grade 8 Science Assessment Example Item Response 
Function—Dichotomous Item
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Exhibit 13.2 TIMSS 1999 Grade 8 Science Assessment Example Item Response 
Function—Polytomous Item

Exhibit 13.1 shows a plot of the empirical and theoretical item 
response functions for a dichotomous item. The horizontal axis 
represents the proficiency scale, and the vertical axis represents 
the probability of a correct response. The solid curve is the theo-
retical curve based on the estimated item parameters. The cen-
ters of the small circles represent the empirical proportions 
correct. The size of the circles is proportional to the sum of the 
posteriors at each point on the proficiency scale for all of those 
who received the item; this is related to the number of respon-
dents contributing to the estimation of that empirical proportion 
correct. Exhibit 13.2 shows a plot of the empirical and theoretical 
item response functions for a polytomous item. Again, the hori-
zontal axis represents the proficiency scale, but the vertical axis 
represents the probability of having a response fall in a given 
score category. The interpretation of the small circles is the same 
as in Exhibit 13.1. For items where the model fits the data well, 
the empirical and theoretical curves are close together.

13.4 Scaling 
Mathematics and 
Science Domains 
and 
Content Areas

In order to estimate student proficiency scores for the subject 
domains of mathematics and science, all items in each subject 
domain were calibrated together. This approach was chosen 
because it produced the best summary of student proficiency 
across the whole domain for each subject. Treating the entire 
mathematics or science item pool as a single domain maximizes 
the number of items per respondent, and the greatest amount of 
information possible is used to describe the proficiency distribu-
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tion. This was found to be a more reliable way to compare profi-
ciency across countries than to make a scale for each content area, 
such as algebra, geometry, etc., and then form a composite mea-
sure of mathematics by combining the content area scales. 

A disadvantage of this approach is that differences in content 
scales may be underemphasized as they tend to regress toward 
the aggregated scale. Therefore, to enable comparisons of stu-
dent proficiency on content scales, TIMSS provided separate 
scale scores of each content area in mathematics and science. If 
each content area is treated separately when estimating item 
parameters, differential profiles of content area proficiency can 
be examined, both across countries and across subpopulations 
within a country.

13.4.1 Omitted and Not-Reached Responses.

Apart from data that by design were not administered to a stu-
dent, missing data could also occur when a student did not 
answer an item, whether because the student did not know the 
answer, omitted it by mistake, or did not have time to attempt the 
item. In TIMSS 1999, not reached items were treated differently 
in estimating item parameters and in generating student profi-
ciency scores. In estimating the values of the item parameters, 
items that were considered as not having been reached by stu-
dents were treated as if they had not been administered. This 
approach was optimal for parameter estimation. However, since 
the time allotment for the TIMSS 1999 tests was generous, and 
enough for even marginally able respondents to complete the 
items, not reached items were considered to have incorrect 
responses when student proficiency scores were generated. 

13.4.2 Proficiency Estimation Using Plausible Values

Most cognitive skills testing is concerned with accurately assessing 
the performance of individual respondents for the purposes of 
diagnosis, selection, or placement. Regardless of the measurement 
model used, classical test theory or item response theory, the accu-
racy of these measurements can be improved - that is, the amount 
of measurement error can be reduced - by increasing the number 
of items given to the individual. Thus, it is common to see achieve-
ment tests designed to provide information on individual students 
that contain more than 70 items. Since the uncertainty associated 
with each θ in such tests is negligible, the distribution of θ or the 
joint distribution of θ with other variables can be approximated 
using individual θs. 
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It is possible to approximate t* using random draws from the con-
ditional distribution of the scale proficiencies given the student’s 
item responses xj, the student’s background variables yj, and 
model parameters for the sampled student j. These values are 
referred to as imputations in the sampling literature, and as plau-
sible values in large-scale surveys such as NAEP, NALS, and 
IALLS.3 The value of θ for any respondent that would enter into 
the computation of t is thus replaced b52. 

IALLSnot as ouldomi/F8 1 36D( is 7 T3 Tw(bles caledosTnotTincl )Tscalebles biatuyTj/F8 1- 36D27 TD-0.00(ing literthe con-)populs in .F8 1 re2 TD-0.000 Tw(PTj values in l)Tj-notTjsposcore the sinavidualthe samplusuur *0 0727 TD-0.0047 T1.9sib(se)Tj, n o/Fsthto Tj-ition2. s in l) ouldmayrbe us as imest 
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density of proficiencies of the scales, conditional on the observed 
value  of background responses and parameters Γ and Σ. Item 
parameter estimates are fixed and regarded as population values 
in the computations described in this section.

13.4.3 Conditioning

A multivariate normal distribution was assumed for , 
with a common variance Σ, and with a mean given by a linear 
model with regression parameters Γ. Since in large-scale studies 
like TIMSS there are many hundreds of background variables, it 
is customary to conduct a principal components analysis to 
reduce the number to be used in Γ. Typically, components repre-
senting 90% of the variance in the data are selected. These prin-
cipal components are referred to as the conditioning variables 
and denoted as . The following model is then fit to the data:

(9)

where ε is normally distributed with mean zero and variance Σ. As 
in a regression analysis Γ is a matrix each of whose columns are 
the effects for each scale and Σ is the matrix of residual variance 
between scales.

In order to be strictly correct for all functions Γ of , it is neces-
sary that  be correctly specified for all background variables 
in the survey. In Benchmarking, however, principal-component 
scores based on nearly all background variables were used. Those 
selected variables were chosen to reflect high relevance to policy 
and to education practices. The computation of marginal means 
and percentile points of  for these variables is nearly optimal. 
Estimates of functions Γ involving background variables not con-
ditioned in this manner are subject to estimation error due to 
mis-specification. The nature of these errors is discussed in detail 
in Mislevy (1991). 

The basic method for estimating Γ and Σ with the Expectation 
and Maximization (EM) procedure is described in Mislevy (1985) 
for a single scale case. The EM algorithm requires the computa-
tion of the mean, , and variance Σ, of the posterior distribution 
in equation (7). For the multiple content area scales of TIMSS 
1999, the computer program CGROUP (Thomas, 1993) was 
used. The program implemented a method to compute the 
moments using higher-order asymptotic corrections to a normal 
approximation. Case weights were employed in this step.

y
j

P θj y
j

Γ Σ, , ,( )

yc
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13.4.4 Generating Proficiency Scores

After completing the EM algorithm, the plausible values are 
drawn in a three-step process from the joint distribution of the 
values of Γ for all sampled. First, a value of Γ is drawn from a nor-
mal approximation to  that fixes Σ at the value  
(Thomas, 1993). Second, conditional on the generated value of Γ 
(and the fixed value of Σ= ), the mean, , and variance, Σj

p, of 
the posterior distribution in equation (2) are computed using 
the methods applied in the EM algorithm. In the third step, the 
proficiency values are drawn independently from a multivariate 
normal distribution with mean  and variance Σj

p. These three 
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5. An estimate of the variance of T is the sum of two compo-
nents: an estimate of Var(Tu)V
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duces slightly different means and standard deviations than in 
the original TIMSS 1995 results. Comparison of the original and 
rescaled 1995 proficiency scores is not appropriate because of 
this difference in the scale metric.

13.5.2 Scaling the 1999 Data and Linking to the 1995 Data 

Since the achievement item pools used in 1995 and 1999 had 
about one-third of the items in common, the scaling of the 1999 
data was designed to place both data sets on a common IRT scale. 
Although the common items administered in 1995 and 1999 
formed the basis of the linkage, all of the items used in each data 
collection were included in the scaling since this increases the 
information for proficiency estimation and reduces measure-
ment error. 

The linking of the 1995 and 1999 scales was done at the mathe-
matics and science domain levels only, since there were not 
enough common items to enable reliable linking within each 
content area. 

13.5.3 Creating IRT Scales for Mathematics and Science Content 
Areas for 1995 and 1999 Data

IRT scales were also developed for each of the content areas in 
mathematics and science for both 1995 and 1999. Because there 
were few items common to the two assessments, and because of 
some differences in their composition, the two scales were not 
linked, but rather each was established independently.

For TIMSS 1999, the international mean for mathematics was 487 
and the international mean for science was 488. The international 
mean for each content area was set to be equal to the subject area 
international mean.

13.5.4 Proficiency Scores for Benchmarking Students

Benchmarking plausible values for each student were generated 
using item statistics obtained from the international study. Conse-
quently, the benchmarking plausible values are directly compara-
ble to those obtained in the international study. For each student, 
five plausible values were produced for each of the five mathemat-
ics content areas (fractions and number sense; measurement; data 
representation, analysis, and probability; geometry; and algebra), 
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as well as for mathematics overall. Similarly, plausible values were 
generated for each student in each of the six science content areas 
(earth science; life science; physics; chemistry; scientific inquiry; 
and the nature of science) and science overall.

13.6 Summary IRT was used to model the TIMSS achievement data. TIMSS 
used two- and three-parameter IRT models, and plausible-value 
technology to reanalyze the 1995 achievement data and analyze 
the 1999 achievement data. Plausible-value methodology was 
used to generate proficiency estimates for each subject and 
each content area.
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